Scientific journal
Modern high technologies
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 1,021

POLIAMIDE MICROFILTRATION MEMBRANES IMPROVED IN POROSITY AND STRENGTH PROPERTIES

Panov Y.T. 1 Tarasov A.V. 2 Lepeshin S.A. 1 Ermolaeva E.V. 1
1 Vladimir State University
2 Research and Manufacturing Enterprise Technofilter LLC
Расширение областей применения традиционных мембранных технологий обуславливает повышение требований к мембранам, в первую очередь, повышение производительности и прочности. Наиболее перспективным способом решения этой проблемы является модификация промышленно выпускаемых мембран. На примере полиамидной мембраны показано, что применение в качестве модификаторов полиэтиленглиголя, глицерина, полигексаметиленгуанидин гидрохлорида, хитозана позволяет получить мембрану с повышенными порометрическими и прочностными свойствами. Лучшие результаты были достигнуты при применении в качестве модифицирующего агента хитозана. Доказано, что хитозан играет роль структурирующей добавки, непосредственно влияющей на формирование структуры модифицированных полиамидных мембран. Определена область концентраций хитозана (0,5–1,0 %), обеспечивающая наибольший структурирующий эффект, подтверждаемый повышением прочностных и порометрических свойств мембран.
Increase in application of conventional membrane technologies has caused membranes requirements growth. First of all they are requirements for productivity and strength improvement. The most prospective way to solve this problem is modification of commercial membranes. A polyamide membrane is taken to demonstrate that application of polyethylenglycol, glycerin, polyhexamethylenguanidines hydrochloride, and chitosan as modifiers makes it possible to produce a membrane with improved porosity and strength properties. The best results were obtained when chitosan was used as a modifying agent. Chitosan was proved to play a role of a structuring additive having a direct impact on the formation of the structure of modified polyamide membranes. The range of chitosan concentration having the most structuring i is identified (0,5–1,0 %). It is evidenced by the improvement of porosity and strength properties of membranes.
polyamide microfiltration membrane
space modification
modifying agent
chitosan
porosity
strength properties

Мембранные фильтры получили широкое распространение в науке и технике, биохимии, в клинической и аналитической практике.

В настоящее время мембранные процессы широко применяются в химической, фармацевтической, электронной промышленности для получения сверхчистых веществ и при производстве пищевых продуктов и различных напитков [1, 4].

Сегодня 80 % мирового рынка мембран составляют полимерные мембраны. Разнообразие их огромно. Свойства мембран во многом определяются свойствами полимеров, из которых они изготовлены [1, 5].

Для изготовления мембран используют самые разнообразные полимеры: эфиров целлюлозы (ацетата целлюлозы, нитроцеллюлозы и их смесей), полиэфиров, алифатических и ароматических полиамидов, полисульфонов, полиэфиримида, полиимидов, ароматических полиамидоимидов, полигидразидов, полипропилена, фторированных полимеров, поливинилхлорида и поливинилиденхлорида (фторида), поливинилового спирта и его сополимеров, сополимеров акрилонитрила, полиэфиркарбоната, полидиметилсилоксана и его сополимеров, хитозана, полиарилатов, полиуретанов, полипиперазинамидов, сополимеров метилметакрилата и других [1, 7].

В настоящее время широкое распространение получили полиамидные мембраны. Полиамиды обладают целым комплексом свойств, позволяющим формовать из них волокна, пленки или перерабатывать в пластмассовые изделия.

Уникальным свойством этих полимеров является высокая гидрофильность, обусловленная наличием амидных групп в аморфных областях, которые доступны для взаимодействия с водой.

Полиамидные мембраны не теряют своей прочности и эластичности при многократных сгибаниях, они устойчивы к механическим, химическим и термическим нагрузкам, биологически инертны. Мембраны хорошо выдерживают стерилизацию насыщенным паром в автоклаве при температуре 120 °С без изменения механических и структурно-фильтрационных характеристик.

Однако, несмотря на то что работы в области получения мембран на основе алифатических полиамидов активно ведутся более 20 лет, многие проблемы в этих процессах до сих пор не решены. Например, не решена проблема с широким распределением пор по размерам производимых мембран, в ряде случаев требуются мембраны с более высокими механическими свойствами.

Целью данной работы явилась разработка полиамидных микрофильтрационных мембран с улучшенными порометрическими и прочностными свойствами.

Материалы и методы исследования

Объектами исследований являлись мембраны микропористые капроновые (ММК) производства ООО НПП «Технофильтр» (Россия, г. Владимир).

В качестве модифицирующих агентов использовались: полиэтиленглиголь (ПЭГ), глицерин, полигексаметиленгуанидин гидрохлорид (ПГМГ), хитозан (ХТЗ).

Получение мембран осуществлялось в лабораторном реакторе, путем приготовления формовочного раствора из ПА-6 в смеси «вода/муравьиная кислота» и последующим введением модифицирующих агентов в количестве 0,5–3,0 % от массы полимера с последующей отливкой мембраны на опытно-промышленной установке ООО НПП «Технофильтр».

В работе использовались стандартные методики исследования порометрических и прочностных характеристик мембран (ГОСТ Р 50110-92, ГОСТ Р 50111-92).

Результаты исследования и их обсуждение

Наиболее перспективным способом решения существующих проблем, с технологической точки зрения, является модификация промышленно выпускаемых мембран.

Модификация небольшого ассортимента промышленно выпускаемых мембран открывает широкие возможности для получения мембран с заданными свойствами.

На первом этапе исследований был проведён выбор модифицирующей добавки для получения микрофильтрационной мембраны с улучшенными порометрическими и прочностными свойствами.

Основными требованиями, предъявляемыми к добавкам, при модификации полиамидных мембран являются:

– совместимость с полиамидом;

– растворимость в смеси «муравьиная кислота-вода»;

– высокая эффективность при малых дозах;

– безопасность;

– доступность;

– низкая стоимость.

Исходя из литературных данных [2, 3, 8], в качестве наиболее перспективных и доступных были выбраны полиэтиленгликоль (ПЭГ), глицерин и поликатионы: хитозан (ХТЗ), полигексаметиленгуанидин гидрохлорид (ПГМГ). Выбранные модифицирующие агенты образуют стабильные растворы с полиамидом 6 в муравьиной кислоте в широком интервале концентраций, а также приводят к изменению кинетики осаждения смеси полимеров при формовании мембран, что является дополнительной возможностью направленного регулирования структуры формирующейся мембраны.

Для определения оптимального состава формовочного раствора были получены и исследованы образцы модифицированных микрофильтрационных мембран. Получение мембран осуществлялось путем объемной модификации, т.е. растворения мембрано образующего полимера (ПА-6) в муравьиной кислоте и последующим введением в формовочный раствор модифицирующих агентов в количестве 0,5–3,0 % от массы мембранообразующего полимера с последующей отливкой мембраны путём помещения раствора полимера в осадитель, промывкой и сушкой полученной модифицированной микрофильтрационной мембраны.

Все эксперименты проводились в идентичных условиях (соотношение полиамида-6, растворителя, нерастворителя оставалось постоянным, изменялись только природа и количество модифицирующих агентов).

Вначале было изучено влияние ПЭГ и глицерина на свойства полиамидных мембран. Результаты приведены на рис. 1.

pan1a.tif pan1b.tif

Рис. 1. Влияние количества ПЭГ и глицерина на порометрические характеристики мембран

На основании изученных данных было сделано предположение, что при модификации полиамидной микрофильтрационной мембраны ПЭГ и глицерином должны значительно измениться свойства получаемых мембран [3]. Так как ПЭГ и глицерин, в качестве нерастворителя, изменяя термодинамические свойства полимерного раствора, промотируют фазовое разделение формовочного раствора, с другой стороны их присутствие в растворе увеличивает вязкость раствора, замедляя фазовое расслоение. Два различных эффекта работают одновременно, влияя на структуру и характеристики мембран.

Однако проведенные исследования показали, что ПЭГ и глицерин не оказали существенного влияния на порометрические и прочностные характеристики полиамидной микрофильтрационной мембраны.

Во второй серии экспериментов в качестве модифицирующих агентов использовались поликатионы, а именно природный полимер ХТЗ и синтетический ПГМГ (рис. 2).

pan2a.tif pan2b.tif

Рис. 2. Влияние количества поликатионов на порометрические характеристики микрофильтрационных мембран

Полученные результаты показывают, что при увеличении количества ХТЗ с 0,5 % в составе мембраны, производительность постоянно снижается, достигая при 3,0 % хитозана значения 7,2 мл/см2?мин. При этом точка пузырька заметно повышается до концентрации ХТЗ в 1,0 %. С точки зрения оценки порометрических характеристик, для мембран с эффективным средним диаметром пор 0,2 мкм оптимальными являются рецептуры мембран с добавками 0,5–1,0 % ХТЗ, сочетающие достаточно высокие производительность и значение точки пузырька.

Характер изменений порометрических характеристик полиамидных мембран при модификации их ПГМГ несколько отличается от варианта с использованием ХТЗ.

При увеличении содержания ПГМГ точка пузырька не увеличивается, а наоборот снижается. Производительность при этом повышается до значения 12,1 мл/см2?мин при 1,0 % ПГМГ, а затем заметно снижается. Эта разница может быть обусловлена отличием в характере взаимодействия в системах: полиамид – ХТЗ и полиамид – ПГМГ. Известно, что ХТЗ хорошо совместим с широким кругом полимерных соединений и со многими из них участвует в реакциях комплексообразования. Так, в работе [6] показано, что ХТЗ образует комплексы с поливинилкапролактамом (ПВК) с образованием водородных связей между -C=O группой ПВК и OH- и NH-группами ХТЗ. По-видимому, аналогичное взаимодействие происходит и в нашем случае, когда карбонильные группы полиамида образуют водородные связи с функциональными группами ХТЗ. Можно предположить, что такое взаимодействие, а также способность ХТЗ поглощать значительное количество воды ускоряет процесс осаждения полиамида и позволяет проводить его более равномерно за счёт распределения ХТЗ по всему объёму раствора. Эти факторы приводят к получению более плотной мембраны с повышенной точкой пузырька. В случае ПГМГ гуанидиновая группа также должна образовывать водородную связь, как и в случае с ХТЗ. Тем более, что она является более сильным органическим основанием, с удобным пространственным расположением атомов азота. Однако наличие гидрофобной полиметиленовой цепочки, по-видимому, осложняет их взаимодействие с полиамидом. Поэтому минимальное количество ПГМГ (до 1 %) хорошо распределяется в матрице основного полимера и дает некоторое повышение свойств, а уже при содержании 2 % наблюдается обратная тенденция.

Исследование механических свойств образцов модифицированных мембран показало, что мембраны, модифицированные ХТЗ, обладают улучшенными по сравнению с исходными, прочностными свойствами (относительное удлинение при разрыве достигает 70,2 %, а разрушающее напряжение при растяжении 5,60 МПа, тогда как у исходных эти показатели 38,2 % и 4,08 МПа соответственно).

Исходя из вышесказанного, наиболее перспективным модификатором, оказывающим значительное положительное влияние на характеристики микрофильтрационных полиамидных мембран, является природный полисахарид ХТЗ.

Таким образом, в дальнейших исследованиях использовались мембраны модифицированные ХТЗ.

Ниже представлены микрофотографии исходной и модифицированной 0,5 % ХТЗ полиамидной мембраны (рис. 3).

pan3a.tif pan3b.tif

А Б

Рис. 3. Микрофотографии среза полиамидных мембран. А – исходная мембрана; Б – модифицированная 0,5 % ХТЗ

На фотографиях видно, что структура модифицированной мембраны стала более плотной и равномерной.

Для более детального изучения влияния ХТЗ на структуру мембран измерено распределение пор по размерам и проведен рентгеноструктурный анализ исходных и модифицированных мембран. Для оценки распределения пор по размерам были исследованы два образца мембраны: исходная и модифицированная 0,5 % ХТЗ (рис. 4).

pan4.tif

Рис. 4. Графики распределения пор по размерам исходной и модифицированной 0,5 % ХТЗ

Известно, что для обеспечения высокой степени очистки фильтруемой среды очень важно узкое распределение пор по размерам применяемых мембран [1, 4, 5].

Из приведенного графика (рис. 4) видно, что добавка ХТЗ уменьшает средний размер пор и приводит к более узкому распределению пор по размерам.

Рентгеноструктурное исследование модифицированных мембран, проведенное в ИФХЭ РАН г. Москвы с использованием специализированного малоуглового дифрактометра SAXSess в вакууме при комнатной температуре, показало (рис. 5), что с увеличением количества вводимого ХТЗ средний размер кристаллитов уменьшается, а общая кристалличность остается неизменной до концентрации в 1,0 %, и структура модифицированной мембраны становится более равномерной.

 

pan5.tif

Рис. 5. Степень кристалличности и размеры кристаллов в мембранах при модификации ХТЗ

 

Дальнейшее увеличение концентрации ХТЗ (> 1 %) значительно увеличивает вязкость формовочного раствора, изменяется фазовое расслоение, что и приводит к снижению степени кристалличности и ухудшению порометрических характеристик мембран (снижается точка пузырька и производительность).

Заключение

Приведенные результаты дают основание говорить о том, что хитозан играет роль структурирующей добавки, непосредственно влияющей на формирование надмолекулярной структуры модифицированных полиамидных мембран и, как следствие, – на порометрические и прочностные свойства получаемой мембраны. Введение ХТЗ в небольших количествах 0,5–1,0 % позволяет ему равномерно распределиться между макромолекулами полиамида, что и приводит при осаждении (формовании мембраны) к образованию более равномерной структуры мембраны. Такой структуре мембраны соответствует более узкое распределение пор и, как следствие, – более высокая точка пузырька.