Научный журнал
Современные наукоемкие технологии
ISSN 1812-7320
"Перечень" ВАК
ИФ РИНЦ = 0,940

АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫМ ОБОРУДОВАНИЕМ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДОЗВУКОВЫХ СКОРОСТЕЙ

Башуров В.В. 1 Гилев В.М. 1, 2 Саленко С.Д. 2 Слободской И.В. 2 Шпак С.И. 1
1 Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН
2 Новосибирский государственный технический университет
1. Кураев А.А., Обуховский А.Д., Однорал В.П., Подружин Е.Г., Саленко С.Д. Лабораторный практикум по аэродинамике. – Новосибирск: Изд-во НГТУ, 2001. – 52 с.
2. Гилев В.М., Батурин А.А., Саленко С.Д., Слободской И.В. Автоматизация сбора и обработки данных при проведении экспериментов в учебной аэродинамической трубе // Международный журнал экспериментального образования. – 2010, №7. – С. 112–114.
3. Гилев В.М., Саленко С.Д., Слободской И.В. О стабилизации скорости потока в рабочей части аэродинамической трубы // Международный журнал прикладных и фундаментальных исследований. – 2013. – № 8-3. – С. 130–131.
4. Гилев В.М., Шпак С.И., Яковлев В.В. Организация доступа к базе данных аэродинамических исследований // В мире научных открытий. –2014. – № 4 (52). – С. 8–12.
5. Грек Г.Р., Бойко А.В., Гилев В.М., Зверков И.Д., Сорокин А.М. Автоматизированная система сбора термоанемометрической информации в аэрофизическом эксперименте // Международный журнал прикладных и фундаментальных исследований. – 2014, – № 5-1, –С. 11–14.
6. Запрягаев В.И., Гилев В.М., Певзнер А.С., Собстель Г.М., Гаркуша В.В. , Яковлев В.В. Автоматизированные системы сбора и обработки экспериментальных данных в аэродинамических трубах периодического действия // Проблемы и достижения прикладной математики и механики: к 70-летию академика В.М. Фомина: сб. науч. трудов / ред. кол.: Федоров А.В. (отв. ред.) и др. – Новосибирск: Параллель, 2010. – С. 183–192.

В Новосибирском государственном техническом университете (НГТУ) широко проводятся фундаментальные и прикладные научные исследования в области нестационарной аэродинамики. Для выполнения подобных исследований, а также обучения студентов, магистрантов НГТУ основам аэродинамики и гидромеханики на кафедре аэрогидродинамики университета используется аэродинамическая труба дозвуковых скоростей Т-503 [1]. Данная установка является аэродинамической трубой замкнутого типа с открытой рабочей частью и имеет следующие основные характеристики:

  • рабочий диапазон скоростей от 0 до 60 м/с;
  • диаметр рабочей части 1,2 м, длина 2 м;
  • неравномерность скорости в ядре потока диаметром 0,8 м не более 0,8 %;
  • степень турбулентности без турбулизирующих устройств около 0,3 %.

Для обеспечения эффективной работы аэродинамической трубы в настоящее время создается система управления и сбора данных для указанной физической установки [2].

Представляемая аэродинамическая труба оснащена рядом технических комплексов, с помощью которых производится управление как самой экспериментальной установкой, так и ходом проведения в ней экспериментов. Далее представлен перечень этих комплексов и выполняемых ими функций.

1. Аэродинамические тензовесы. Предназначены для измерения сил и моментов сил, действующих на исследуемую модель в процессе проведения эксперимента. Использование аэродинамических весов позволяет определить силу лобового сопротивления, подъемную силу, момент тангажа испытываемой модели.

2. Альфа-механизм. С помощью альфа-механизма по команде экспериментатора производится установка требуемого угла атаки, под которым испытываемая модель устанавливается в рабочей части аэродинамической трубы. Данный механизм позволяет проводить экспериментальные исследования моделей под разными углами атаки. Изменение угла атаки в процессе проведения эксперимента может производиться как ручным способом, так и в автоматическом режиме с погрешностью не более ±0,1° по заранее заданной программе.

3. Координатное устройство (или, просто, координатник). Это устройство, предназначенное для перемещения измерительного датчика (например, датчика термоанемометра) в трехмерном пространстве рабочей части аэродинамической трубы по координате и по углу. Таким образом, можно измерять профили скорости потока и их пульсаций, распределения давления в различных сечениях аэродинамической трубы. Перемещение датчика может производиться как ручным способом, так и в автоматическом режиме по заранее заданной программе.

На первом этапе перемещение датчика в автоматическом режиме будет производиться только по Y-координате, в последующем предполагается реализовать возможность перемещения по всем трем координатам.

4. Главный двигатель вентилятора аэродинамической трубы. Обеспечивает вращение вентилятора для создания в трубе воздушного потока. Система осуществляет управление и поддержание постоянства скорости потока в аэродинамической трубе за счет формирования сигналов для цепи управления тиристорным приводом главного двигателя аэродинамической трубы [3].

Управление скоростью потока и поддержание ее постоянства осуществляется на основе алгоритмов PID-регулирования.

Заключение. К настоящему времени разработана структура создаваемой автоматизированной системы, отрабатываются алгоритмы ее функционирования [4 –6]. Производится разработка аппаратных и программных средств для управления указанным экспериментальным оборудованием. Осуществляется разработка и тестирование АРМ оператора, с помощью которого осуществляется взаимодействие экспериментатора с указанным оборудованием аэродинамической трубы. Программное обеспечение строится на основе системы графического программирования LabVIEW.

Представляемая работа выполнялась при финансовой поддержке грантов РФФИ № 14-07-00421 и 12-07-00548.


Библиографическая ссылка

Башуров В.В., Гилев В.М., Гилев В.М., Саленко С.Д., Слободской И.В., Шпак С.И. АВТОМАТИЗИРОВАННОЕ УПРАВЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫМ ОБОРУДОВАНИЕМ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДОЗВУКОВЫХ СКОРОСТЕЙ // Современные наукоемкие технологии. – 2014. – № 10. – С. 128-128;
URL: https://top-technologies.ru/ru/article/view?id=34761 (дата обращения: 20.04.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674